ANSWER KEY: PHASES OF MATTER TEST REVIEWS 1 & 2

REVIEW 1:

Endothermic: phase changes that require an INCREASE in temperature/heat energy (endo = "into"; heat must go into the substance)

Exothermic: phase changes that require a DECREASE in temperature/heat energy (exo = "out of"; heat must go out of the substance - so it must cool)

Phase change	From	To	Exothermic or Endothermic	Temperature	Where on graph?
Melting	Solid	Liquid	endothermic	Increase to 5°C	Point b
Freezing	Liquid	Solid	exothermic	Decrease to 5°C	Point b
Boiling	Liquid	Gas	endothermic	Increase to 15°C	Point d
Condensing	Gas	Liquid	exothermic	Decrease to 15°C	Point d
Vaporizing	Liquid	Gas	endothermic	Increase to 15°C	Point d
Evaporating	Liquid	Gas	endothermic	Increase to below 15°C	Below Point d
Deposition	Gas	Solid	exothermic	skip	skip
Sublimation	Solid	Gas	endothermic	skip	skip

- 1. increase temp = increase k.e.
- 2. gas
- 3. solid
- 4. e
- 5. a
- 6.5°C
- 7. freezing
- 8. a = solid, b=solid & liquid (melting occurring), c = liquid
- 9. remaining the same (no temp. increase during phase changes)
- 10. d
- 11. 15°C
- 12. a
- 13. because the molecules are using heat not to move faster, but to break free from other molecules (called "latent heat")
- 14. water and mercury (because 20°C is between the melting point and boiling point for each)
- 15. water and nitrogen (because 115°C is above the boiling point for each)
- 16. iron (because 20°C is below the melting point for iron)

Temperature review:

1. absolute zero = no vibration/movement of molecules = -273° C, 0° K

Conversions: remember, K = C + 273

$$25^{\circ} C = 298^{\circ} K$$

$$0^{\circ} C = 273^{\circ} K$$

$$5^{\circ} K = -268^{\circ} C$$

$$290^{\circ} \text{ C} = 563^{\circ} \text{ K}$$

$$325^{\circ} K = 52^{\circ} C$$

REVIEW 2:

- 1. condensation
- 2. charles' law
- 3. vaporization
- 4. gas
- 5. endothermic
- 7. gas
- 8. C (gas fog = condensation = lost heat = exothermic)
- 9. B (altitude affects pressure, which affects boiling pt.)
- 10. D
- 11. A (constant volume makes them non-compressible)
- 12. B
- 14. Denver is higher in altitude than New Orleans, therefore Denver has a lower atmospheric pressure. Because of this, water can boil at a lower temperature in Denver. Because the water boils away before it reaches 100° C, the water in the pot is cooler in Denver than in N.O., therefore it takes more time to boil the pasta.
- 15. This produces sublimation the water provides heat to the frozen carbon dioxide (dry ice), and the heat allows the molecules to change state directly to a gas sublimation. This produces the illusion of "smoke" its really the vaporizing CO₂.
- 17. K = C + 273. Boiling pt. of $H_2O = 100$ °C, 100 °C + 273 = 373 °K
- 18.
- A. vibrate
- B. added
- C. plasma
- D. pressure