SOLUBILITY CURVES

WHAT DO THESE GRAPHS MEAN?

- Each line shows how much stuff (CALLED SOLUTE) can be dissolved in 100 mL OF WATER (CALLED SOLVENT) at a bunch of different temperatures.
- Why at a bunch of different temperatures?
- Because, as the lifesaver lab showed, hotter water is better at dissolving stuff. So, hot water not only dissolves a solute faster, but it can also dissolve A GREATER MASS OF SOLUTE, in the same volume of water.

WHAT DOES THE LINES REPRESENT?

- They represents SATURATED SOLUTIONS at a given temperature:
- SATURATED = cannot dissolve any more solute

WHAT DO THE LINES REPRESENT?

 continuedFor example, let's say l put a 10 grams of powdered lemonade mix into a 100 ml glass of water, and stir until dissolved

I then try to add 1 more gram, but it won't dissolve - it just piles up on the bottom of the glass.

- This shows me that at a water temperature of 20° celcius, 100 mL of water is saturated by 10 grams of lemonade mix - it cannot dissolve 11 grams (or more) of mix

- I will plot this information on a graph - my point will be: $x=20^{\circ}$ celcius, $y=10$ grams of solute.

Next, I heated 100 mL of water up to 40° celcius, and I added 20 grams of powdered lemonade mix into the heated glass of water, and I stirred until it all dissolved

I then try to add 1 more gram, but it won't dissolve - it just piles up on the bottom of the glass.
-This shows me that at a water temperature of 40° celcius, 100 mL of water is SATURATED by 20 grams of lemonade mix - it cannot dissolve 21 grams (or more) of mix

- I will plot this information on a graph my point will be: $x=40^{\circ}$ celcius, $y=20$ grams of solute.

This is a

SATURATION curve it's a line that shows how much lemonade mix (the SOLUTE) saturates 100 mL of water at different temperatures (so far, I've tried 2 temperatures)

Next, I continued to heat 100 mL of water up by 10° celcius, and I kept adding grams of powdered lemonade mix into the heated glass of water, and I stirred until it all dissolved.

For each new temperature, I would then try to add 1 more gram, but it won't dissolve - it just piles up on the bottom of the glass. At that point, l'd heat up the water again, and repeat the process.....

- I then plotted all this information on my graph - with x points for every 10° celcius, and y points for the grams of solute that would completely dissolve at that water

I now have a SOLUBILITY CURVE for Lemonade mix:

- The LINE ITSELF represents a SATURATED SOLUTION, which is the maximum mass of solute dissolved in 100 mL of water at a given temperature:

- Remember, water becomes a better solvent as it is heated, so it can dissolve more solute at higher temperatures that's why the curve has a positive slope:

- The LINE ITSELF also represents a "perfect" SOLUTION; that is, a solution with the EXACT amount of solute that will saturate 100 mL of water:

- At any temperature, any LESS solute than the value on the line would produce an UNSATURATED solution
- (points below the line)

- At any temperature, any MORE solute than the value on the line would produce an OVERSATURATED solution
- (points above the line)

\section*{UNDISSOLVED SOLUTE AT 50 BOTTOM, or PRECIPITATE
 forms as the solution cools

 More solute can be dissolved to make the solution saturated
 | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| temperature in celcius | | | | | | | | | | |}

HOMEWORK

 SHEET "A"Q: WHAT IS THE MAXIMUM AMOUNT OF NaCl THAT CAN BE DISSOLVED AT $50^{\circ} \mathrm{C}$?

A: approx $35 \mathrm{~g} / 100 \mathrm{~mL}$:
See graph, start at $50^{\circ} \mathrm{C}$ line on x axis, move up until get to NaCl line, then across to Y axis, $=$ $35 \mathrm{~g} / 100 \mathrm{~mL}$

MYSTERY SUBSTANCE LAB SOLUTION:

GIVEN: 40g OF SOLUTE.

WHY LOOK FOR A PRECIPITATE?

WHY IS THE PRECIPITATE TEMPERATURE IMPORTANT?

WHICH LINE DOES YOUR POINT BELONG TO?

HOW DOES YOUR GRAPH DEPICT REALITY?

